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Abstract. This paper describes a framework for mathematics lesson 

observation, the ‘Knowledge Quartet’, and the purposes for which it was 

developed. A grounded theory approach to the analysis of many hours of 

classroom mathematics teaching led to the emergence of the framework, 

with four broad dimensions, through which the mathematics-related 

knowledge of the teacher participants could be observed in practice. This 

paper describes how each of these dimensions is characterised, and 

analyses one lesson, showing how each dimension of the Quartet can be 

identified in it. The paper concludes by outlining recent developments in the 

use of the Knowledge Quartet. 
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Introduction 

This paper concerns a framework for the analysis of mathematics teaching – the 

Knowledge Quartet – which was first developed at the University of Cambridge in the 

years 2002–4. Since then, the Knowledge Quartet has been applied in several research 

and teacher education contexts, and the framework has been further refined and 

developed as a consequence. The paper begins with a description of the research study 

which led to the emergence of the Knowledge Quartet, and how key elements of the 

theory are conceptualised. It proceeds to an analysis of one lesson through the lens of 

the Knowledge Quartet, and concludes with a discussion of some of the ways in which 

the framework has been used and developed further. 

Developing the Knowledge Quartet 

Context and purpose of the research 

In the UK, the majority of prospective, ‘trainee’ teachers are graduates who follow a 

one-year program leading to a Postgraduate Certificate in Education (PGCE) in a 

university
1
 education department. Over half of the PGCE year is spent teaching in 

                                                 

1
 It should be noted, however, that the government now actively promotes a range of workplace-based 

alternatives (such as ‘School Direct’) to the PGCE. These are effectively located in notions of 

apprenticeship, and offer  little interaction with university-based teacher educators. 



32 XXIV SIEM 

schools under the guidance of a school-based mentor, or ‘cooperating teacher’. 

Placement lesson observation is normally followed by a review meeting between the 

cooperating teacher and the student-teacher. On occasion, a university-based tutor will 

participate in the observation and the review. The evidence indicates that these 

mentor/trainee lesson review meetings typically focus heavily on organisational features 

of the lesson, with very little attention to the mathematical content of mathematics 

lessons (Borko & Mayfield, 1995;  Strong & Baron, 2004). 

The purpose of the research from which the Knowledge Quartet emerged was to develop 

an empirically-based conceptual framework for lesson review discussions with a focus 

on the mathematics content of the lesson, and the role of the trainee’s mathematics 

subject matter knowledge (SMK) and pedagogical content knowledge (PCK). In order to 

be a useful tool for those who would use it in the context of practicum placements, such 

a framework would need to capture a number of important ideas and factors about 

mathematics content knowledge in relation to teaching, within a small number of 

conceptual categories, with a set of easily-remembered labels for those categories. 

The research reported in this paper was undertaken in collaboration with Cambridge 

SKIMA colleagues Peter Huckstep, Anne Thwaites, Fay Turner and Jane Warwick. I 

frequently, and automatically, use the pronoun ‘we’ in this text in recognition of their 

contribution. 

Method 

The participants in the first, theory-generating phase of the study were enrolled on a 

one-year PGCE course in which each of the 149 trainees specialised either on the Early 

Years (pupil ages 3–8) or the Primary Years (ages 7–11). Six trainees from each of these 

groups were chosen for observation during their final school placement. The six were 

chosen to reflect a range of outcomes of a subject-knowledge audit administered three 

months earlier. Two mathematics lessons taught by each of these trainees were observed 

and videotaped, i.e. 24 lessons in total. The trainees were asked to provide a copy of 

their planning for the observed lesson. As soon as possible after the lesson the 

observer/researcher wrote a succinct account of what had happened in the lesson, so that 

a reader might immediately be able to contextualise subsequent discussion of any events 

within it. These ‘descriptive synopses’ were typically written from memory and field 

notes, with occasional reference to the videotape if necessary. 
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From that point, we took a grounded approach to the data for the purpose of generating 

theory (Glaser & Strauss, 1967). In particular, we identified in the videotaped lessons 

aspects of trainees’ actions in the classroom that seemed to be significant in the limited 

sense that it could be construed to be informed by a trainee’s mathematics subject matter 

knowledge or their mathematical pedagogical knowledge. We realised later that most of 

these significant actions related to choices made by the trainee, in their planning or more 

spontaneously. Each was provisionally assigned an ‘invented’ code. These were 

grounded in particular moments or episodes in the tapes. This provisional set of codes 

was rationalised and reduced (e.g. eliminating duplicate codes and marginal events) by 

negotiation and agreement in the research team. The 17 codes generated by this 

inductive process are itemised later in this chapter. The name assigned to each code is 

intended to be indicative of the type of issue identified by it: for example, the code 

adheres to textbook (AT) was applied when a lesson followed a textbook script with 

little or no deviation, or when a set of exercises was ‘lifted’ from a textbook, or other 

published resource, sometimes with problematic consequences. 

Equipped with this set of codes, we revisited each lesson in turn and, after further 

intensive study of the tapes, elaborated each descriptive synopsis into an analytical 

account of the lesson. In these accounts, the agreed codes were associated with relevant 

moments and episodes, with appropriate justification and analysis concerning the role of 

the trainee’s content knowledge in the identified passages, with links to relevant 

literature. 

The identification of these fine categories was a stepping stone with regard to our 

intention to offer a practical framework for use by ourselves, our colleagues and teacher-

mentors, for reviewing mathematics teaching with trainees following lesson 

observation. A 17-point tick-list (like an annual car safety check) was not quite what 

was needed. Rather, the intended purpose demanded a more compact, readily-

understood scheme which would serve to frame a coherent, content-focused discussion 

between teacher and observer. The key to the solution of our dilemma was the 

recognition of an association between elements of subsets of the 17 codes, enabling us 

to group them (again by negotiation in the team) into four broad, superordinate 

categories, which we have named (I) foundation (II) transformation (III) connection (IV) 
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contingency. These four units are the dimensions of what we call the ‘Knowledge 

Quartet’. 

Each of the four dimensions is composed of a small number of subcategories that we 

judged, after extended discussions, to be of the same or a similar nature. An extended 

account to the research pathway described above is given in Rowland (2008a). The 

Knowledge Quartet (KQ) has now been extensively ‘road tested’ as a descriptive and 

analytical tool. As well as being re-applied to analytical accounts of the original data 

(the 24 lessons), it has been exposed to extensive ‘theoretical sampling’ (Glaser & 

Strauss, 1967) in the analysis of other mathematics lessons, in England and beyond (see 

e.g. Weston, Kleve & Rowland, 2013). As a consequence, three additional codes
2
 have 

been added to the original 17, but in its broad conception, we have found the KQ to be 

comprehensive as a tool for thinking about the ways that content knowledge comes into 

play in the classroom. We have found that many moments or episodes within a lesson 

can be understood in terms of two or more of the four units; for example, a contingent 

response to a pupil’s suggestion might helpfully connect with ideas considered earlier. 

Furthermore, the application of content knowledge in the classroom always rests on 

foundational knowledge. 

Mathematical Knowledge for Teaching and the Knowledge Quartet 

It is useful to keep in mind how the KQ differs from the well-known Mathematical 

Knowledge for Teaching (MKT) egg-framework due to Deborah Ball and her colleagues 

at the University of Michigan, USA (Ball, Thames & Phelps, 2008). The Michigan 

research team refer to MKT as a “practice-based theory of knowledge for teaching” 

(Ball and Bass 2003, p. 5). The same description could be applied to the Knowledge 

Quartet, but while parallels can be drawn between the methods and some of the 

outcomes, the two theories look very different. In particular, the theory that emerges 

from the Michigan studies aims to unpick and clarify the formerly somewhat elusive and 

theoretically-undeveloped notions of SMK and PCK. In the Knowledge Quartet, 

however, the distinction between different kinds of mathematical knowledge is of lesser 

                                                 

2
  These new codes, derived from applications of the KQ to classrooms within and beyond the UKs, are 

teacher insight (Contingency), responding to the (un)availability of tools and resources (Contingency) 

and use of instructional materials (Transformation) respectively. 
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significance than the classification of the situations in which mathematical knowledge 

surfaces in teaching. In this sense, the two theories are complementary, so that each has 

useful perspectives to offer to the other. 

Conceptualising the Knowledge Quartet 

The concise conceptualisation of the Knowledge Quartet which now follows draws on 

the extensive range of data referred to above. As we observed earlier, the practical 

application of the Knowledge Quartet depends as much on teachers and teacher 

educators understanding the broad characteristics of each of the four dimensions as on 

their recall of the contributory codes. 

Foundation 

Contributory codes: awareness of purpose; identifying errors; overt subject knowledge; 

theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on 

procedures. 

The first member of the KQ is rooted in the foundation of the teacher’s theoretical 

background and beliefs. It concerns their knowledge, understanding and ready recourse 

to what was learned at school, and at college/university, including initial teacher 

education, in preparation (intentionally or otherwise) for their role in the classroom. It 

differs from the other three units in the sense that it is about knowledge ‘possessed’, 

irrespective of whether it is being put to purposeful use. Both empirical and theoretical 

considerations have led us to the view that the other three units flow from a foundational 

underpinning. 

A key feature of this category is its propositional form (Shulman, 1986). It is what 

teachers learn in their ‘personal’ education and in their ‘training’ (pre-service and 

inservice). We take the view that the possession of such knowledge has the potential to 

inform pedagogical choices and strategies in a fundamental way. By ‘fundamental’ we 

have in mind a rational, reasoned approach to decision-making that rests on something 

other than imitation or habit. The key components of this theoretical background are: 

knowledge and understanding of mathematics per se; knowledge of significant tracts of 

the literature and thinking which has resulted from systematic enquiry into the teaching 

and learning of mathematics; and espoused beliefs about mathematics, including beliefs 

about why and how it is learnt. 
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Transformation 

Contributory codes: teacher demonstration; use of instructional materials; choice of 

representation; choice of examples. 

The remaining three categories, unlike the first, refer to ways and contexts in which 

knowledge is brought to bear on the preparation and conduct of teaching. They focus on 

knowledge-in-action as demonstrated both in planning to teach and in the act of 

teaching itself. At the heart of the second member of the KQ, and acknowledged in the 

particular way that we name it, is Shulman’s observation that the knowledge base for 

teaching is distinguished by “ … the capacity of a teacher to transform the content 

knowledge he or she possesses into forms that are pedagogically powerful” (1987, p. 15, 

emphasis added). As Shulman indicates, the presentation of ideas to learners entails 

their re-presentation (our hyphen) in the form of analogies, illustrations, examples, 

explanations and demonstrations (Shulman, 1986, p. 9). Our second category, unlike the 

first, picks out behaviour that is directed towards a pupil (or a group of pupils), and 

which follows from deliberation and judgement informed by foundation knowledge. 

This category, as well as the first, is informed by particular kinds of literature, such as 

the teachers’ handbooks of textbook series or in the articles and ‘resources’ pages of 

professional journals. Increasingly, in the UK, teachers look to the internet for ‘bright 

ideas’, and even for ready-made lesson plans. Teachers’ choice and use of examples has 

emerged as a rich vein for reflection and critique (Rowland,2008b). This includes the 

use of examples to assist concept formation, to demonstrate procedures, and the 

selection of exercise examples for student activity. 

Connection 

Contributory codes: making connections between procedures; making connections 

between concepts; anticipation of complexity; decisions about sequencing; recognition 

of conceptual appropriateness. 

The next category concerns the coherence of the planning or teaching displayed across 

an episode, lesson or series of lessons. Mathematics is notable for its coherence as a 

body of knowledge and as a field of enquiry. Indeed, a great deal of mathematics is held 

together by deductive reasoning. The pursuit of coherence and mathematical 

connections in mathematics pedagogy has been stimulated recently by the work of 
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Askew et al. (1997): of six case study teachers found to be highly effective, all but one 

gave evidence of a ‘connectionist’ orientation. The association between teaching 

effectiveness and a set of articulated beliefs of this kind lends a different perspective to 

the work of Ball (1990), who also strenuously argued for the importance of connected 

knowledge for teaching. 

Our conception of coherence includes the sequencing of topics of instruction within and 

between lessons, including the ordering of tasks and exercises. To a significant extent, 

these reflect deliberations and choices entailing not only knowledge of structural 

connections within mathematics itself, but also awareness of the relative cognitive 

demands of different topics and tasks. 

Contingency 

Contributory codes: responding to students’ ideas; deviation from agenda; teacher 

insight; (un)availability of resources. 

Our final category concerns the teacher’s response to classroom events that were not 

anticipated in the planning. In some cases it is difficult to see how they could have been 

planned for, although that is a matter for debate. In commonplace language this 

dimension of the KQ is about the ability to ‘think on one’s feet’: it is about contingent 

action. Shulman (1987) proposes that most teaching begins from some form of ‘text’ – a 

textbook, a syllabus, ultimately a sequence of planned, intended actions to be carried out 

by the teacher and/or the students within a lesson or unit of some kind. Whilst the 

stimulus – the teacher’s intended actions – can be planned, the students’ responses can 

not. 

Brown and Wragg (1993) suggested that ‘responding’ moves are the lynch pins of a 

lesson, important in the sequencing and structuring of a lesson, and observed that such 

interventions are some of the most difficult tactics for novice teachers to master. The 

quality of such responses is undoubtedly determined, at least in part, by the knowledge 

resource available to the teacher. For further details, see Rowland, Thwaites and Jared 

(2011). 

In the following section, I shall illustrate the application of the KQ in the analysis of one 

primary mathematics lesson. The teacher, Sonia, was in the final stages of a one-year, 

graduate teacher education program in the UK. 
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Primary mathematics teaching: the case of Sonia 

Revised method 

In this phase of our classroom-based investigation, a trainee teacher was again 

videotaped teaching a lesson by one member of our research team, but our insights into 

the lesson were further enhanced as follows. Soon afterwards the team met to view the 

tape and to identify some key episodes in the lesson using the codes and categories 

developed in our earlier work. Later, one team member met with the trainee to view the 

videotape and to discuss some of these episodes. The interviewer drew the trainees’ 

attention, one at a time, to key issues that had been identified by the team in their earlier 

analysis using the KQ, and invited the trainee to comment and offer their own 

perspective on the relevant episodes. We aimed to complete the three stages 

(videotaping the lesson, team reviewing the lesson, discussion with the trainee) in a 

short time span. In the case considered in this paper, the whole process occurred within 

one day. 

We now consider three episodes from a lesson taught by Sonia, whose had previously 

majored in Religious Studies and Education. She joined the graduate primary teacher 

education program with concerns about her own mathematical knowledge and 

confidence. The lesson is with a Year 4 class (pupil age 8-9). She begins with a 

numerical task, as kind of ‘warm-up’, before introducing the learning outcome of the 

lesson - that pupils will be able to “... make and describe repeating patterns which 

involve translations and/or reflections”.. We shall outline and discuss three episodes 

within the lesson. 

Episode 1 

Sonia’s beginning number activity involves finding complements in 100 and 1000. The 

three pairs of examples she uses are: 

  82 + ? =   100   35 + ? =   100    63 + ? =   100 

820 + ? = 1000          350 + ? = 1000  630 + ? = 1000      

A valuable insight into Sonia’s ability to undertake subject knowledge transformation 

comes from her response - firstly instantaneous, then reflective - to the interviewer’s 

question about the choice of examples that she uses for this activity. 
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Teachers often sequence their examples with the aim of making them progressively 

more demanding in some way as their students display success. But this raises the 

question of what makes one complement in 100 more demanding than another. More 

specifically, does Sonia have explicit (or implicit) decision criteria for her choices? In 

fact, Sonia;s account, in the interview, was consistent with our own inference from 

observation: 

Interviewer: You know when you did these … something add something 

equals… 

Sonia: mm 

Interviewer: … 100 and 1000 and so forth, and the examples that you 

chose were 82 … 

Sonia: Completely random. 

Sonia … there was whatever came into my head. 

It is tempting to suppose that since Sonia’s ‘choices’ involved no apparent deliberation, 

they must have been arbitrary. Yet on further questioning, she was able to account for 

what had seemed to her to be ‘random’: 

Interviewer: … Sometimes there’s a choice, when you’re giving examples, 

sometimes … students or teachers have a particular reason for 

doing it. In your case these were just sort of… 

Sonia: What were they? There might have been a reason. 

Interviewer: 82, 35. 

Sonia: 35 because it was a smaller … was an actually smaller 

number, I remember the reason for that one. 

Interviewer: So you had a smaller number after the … 

Sonia: Yeah, after the big number. And then I made sure that that the 

… the last digit of the 63 was a different last digit to the other 

two. 

Interviewer: Why did you have the smaller one … in the middle? 

Sonia: Don’t know. I just thought, this, I’d have a smaller number, 

like a substantially smaller number than 82. 

And later: 

Sonia: The units … the ten was intentional but the unit was random, 

in that case. And in the last one, 63, the … ten was random 

but the unit was intentional. 

Interviewer: Right, so there’s some … thinking behind it. 

Sonia: Yeah. 

Through this discussion, a rationale for Sonia’s choice of examples has been teased out. 

She gives the impression that, although with help she is able to articulate her rationale, 

she was unaware of it in the moment (in the classroom) or until she was asked to talk 

about it. Ideally the examples that teachers use for pedagogical purposes should be 
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chosen deliberately, and with care (Rowland, 2008b). This type of discussion can be 

helpful in reflecting on practice and making explicit those decisions in planning, both 

actual and potential, that can affect the quality of children’s learning experiences. 

Episode 2 

Perhaps the most interesting episode arises when Sonia dwells on the pupils’ solutions 

to 63 + ? = 100. Since she is presented with three answers 37, 27 and 47 the way is open 

for contingent action on her part. 

Instaed of simply identifying the correct answer, Sonia decides to invite a volunteer to 

discuss his method publicly. Matt firstly finds the complement in 10 of the 3 of 63, 

saying “If you do 3 add 7 that makes 10”. It is at this point that Sonia prompts him by 

asking “Where have we got to?”. There is something ambivalent in this utterance. In 

saying it, Sonia could simply be drawing the pupil back onto the task by asking him how 

much of the problem had been solved.  On the other hand, the “where” could be a tacit 

way of suggesting a place in a specific mathematical sequence suggesting that she is 

guiding Matt into a sequential (or ‘whole number’) method. Either way he takes the cue, 

and increasing the 63 by 7 writes 70 + 30 = 100. Sonia then ties things together asking 

“What have we added on?”. She rings the 7 and the 30, asks the class what 30 and 7 

make and finally draws out the answer to her original question: 63 + 37 = 100. 

In the earlier analysis of the videotape, the research team had made a conjecture (about 

supporting a sequential calculation strategy) concerning the intention of the question 

“Where have we got to?”. This was tested in the interview, with illuminating 

consequences: 

Interviewer: Yes, and he said, … 3 add 7 that’s 10, so, … you … referring 

back to what you said earlier on, you make it up to a nice 

number. 

Sonia: Yes. 

Interviewer: … and you said, “Where have we got to?” 

Sonia: Yes. 

Interviewer: … and he said 70. 

Sonia: Yeah … I think, was it 63, was the number? 

Interviewer: Yes, but he said three add 7 is 10 … were you trying to get 

him to do it in sequence, then? 

Sonia: I thought that was what he was going to do, so I was just 

hoping he was, and tried to push him in that direction. 

Interviewer: Yes, so “Where have you got to?” is just the right sort of 

prompt there … 



 XXIV SIEM 41 

In this interchange Sonia confirms that her intention was to draw out a sequential 

process from Matt, even though his reference to 3, 7 and 10 may have derived from an 

intended split-tens strategy. This may also have helped to clarify the thinking of those 

children who gave answers of 27 and 47. 

Episode 3 

The choices of shapes Sonia selects to transform in the next stage of her lesson reveals 

some shortcomings in her foundation knowledge. In particular, she does not appear to 

realise that the internal properties of a transformed figure can mask certain effects of a 

transformation, particularly reflection. 

With the learning objective of pattern-making in place, she tries to establish that when a 

shape is transformed, a second shape is generated which is “the same” as the first. This 

is somewhat confusing, because if her notion of a transformation is a movement, when 

using objects, there will not be two shapes. The moved object will become the image of 

the transformation but the domain shape (the pre-image or ‘argument’ of the 

transformation) will no longer exist. Of course, this dilemma does not arise if the 

transformation is seen, not as a movement, but as a relationship between pairs of points 

(and in consequence between pairs of shapes) in the plane. 

The shapes (including a circle and a rectangle) that she ‘chooses’ to use for 

demonstration are both have a high degree of symmetry, and for this reason they do not 

reveal a change of orientation under the transformations of reflection and translation. 

This points to some weak transformational thinking (in the sense of the knowledge 

quartet!) on Sonia’s part. The circle is spectacularly ineffective in conveying the 

particular properties of a translation. If a circle C has translation image C’, then C’ is 

also the image of C under a reflection or a rotation. An astute pupil presents her with an 

opportunity for contingent action. This pupil perceives the pedagogical inadequacy of 

these symmetrical shapes, and offers “If you reflect it with an L shape it wouldn’t turn 

out the same”. This time, whilst Sonia endorses the pupil’s response she makes no 

attempt to enact his suggestion publicly. However, when questioned later the same day 

Sonia readily saw this as a missed opportunity: 

Interviewer:  … it’s about the boy who did the … who asked for the L-

shape. 

Sonia: Yes. 
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Interviewer:  The shapes that you chose were a rectangle. 

Sonia: Yes. 

Interviewer:  … and a circle, which … have got a certain amount of 

regularity. 

Sonia: Yeah. 

Interviewer: … if you flip the … the rectangle, the same … but the L-

shape … hasn’t got any symmetry in it, if you like. 

Sonia: mm 

Interviewer: Emm, so did you, were you aware of that, or just … 

Sonia: [laughs] I took random shapes off a pile [laughs] um, yes. 

Interviewer: Well, you can see the boy’s point … 

Sonia: Oh yes, definitely. 

Interviewer: It’s quite a good reply. 

Sonia: If I were to do it again, I would … 

Interviewer: It would be striking what has happened to the shape if itself it 

didn’t have any symmetry. 

Sonia: It would be much easier for them to see. 

So here we hope that the discussion has helped Sonia extend her understanding of these 

transformations, and how particular example shapes can be used to demonstrate the 

essence of a specific transformation more effectively than others. By reflecting on 

selected aspects of the mathematical content of her teaching, Sonia is identifying areas 

of her mathematics content knowledge - both SMK and PCK - where there is scope for 

development. She is also becoming aware of areas where she had good instincts which 

she might now incorporate into rational decision-making. 

Supporting research and teaching development 

The KQ has found two intersecting user groups since its emergence a decade ago. In this 

section, we outline resources developed to support these user groups. 

Teacher education and teaching development 

As we remarked earlier, one of the goals of our original 2002 research was to develop an 

empirically-based conceptual framework for mathematics lesson review discussions 

with a focus on the mathematics content of the lesson and the role of the trainee’s 

mathematics subject matter knowledge (SMK) and pedagogical content knowledge 

(PCK). In addition to the kind of ‘knowledgeable-other’ analysis and formative 

feedback exemplified in the cases of Sonia in this paper, it has also been used to support 

teachers wanting to develop their teaching by means of reflective evaluation on their 

own classroom practice (Turner, 2012; Corcoran, 2011). Specifically, the KQ is a tool 

which enables teachers to focus reflection on the mathematical content of their teaching. 
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However, both teacher educators and teachers must first learn about the tool, and how to 

put it to good use. A book (Rowland, Turner, Thwaites & Huckstep, 2009) was written 

to address the needs of this user-group, especially in relation to primary mathematics. It 

describes the research-based origins of the KQ, with detailed accounts of the four 

dimensions, and separate chapters on key codes such as Choice of Examples. The 

narrative of the book is woven around accounts of over 30 episodes from actual 

mathematics lessons. We return to this use of the KQ towards the end of this paper. 

Observational research into mathematics teaching 

In some respects, the needs of researchers using the KQ as a theoretical framework for 

lesson analysis are the same as those of teachers educators, but they are different in 

others. In particular, a broad-brush approach to the four KQ dimensions often suffices in 

the teacher education context, and may even be preferable to detailed reference to 

constituent codes. For example, identifying Contingent moments and actual or possible 

responses to them need not entail analysis of the particular triggers of such unexpected 

events. On the other hand, reflections or projections on Transformation usually involve 

reference to examples and representations. Our writing about the KQ (e.g. Rowland et 

al,. 2005)  initially focused on explaining the essence of each of the four dimensions 

rather than identifying definitions of each of the underlying codes. However, a detailed 

KQ- analysis of a record (ideally video) of instruction necessarily involves labelling 

events at the level of individual KQ-codes, prior to synthesis at dimension level 

(Foundation, Transformation etc). This, in turn, raises reliability issues: the coder needs 

a deep understanding of what is intended by each code, going beyond any idiosyncratic 

connotations associated with its name. Addressing this issue, a Cambridge colleague of 

ours wrote as follows: 

Essentially, the Knowledge Quartet provides a repertoire of ideal types that 

provide a heuristic to guide attention to, and analysis of, mathematical 

knowledge-in-use within teaching. However, whereas the basic codes of the 

taxonomy are clearly grounded in prototypical teaching actions, their 

grouping to form a more discursive set of superordinate categories – 

Foundation, Transformation, Connection and Contingency – appears to risk 

introducing too great an interpretative flexibility unless these categories 

remain firmly anchored in grounded exemplars of the subordinate codes” 

(Ruthven, 2011, p.85, emphasis added). 

In 2010 a Norwegian doctoral student wrote to us as follows: “I need a more detailed 

description on the contributory codes to be able to use them in my work. Do you have a 
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coding manual that I can look at?”. This enquiry, Ruthven’s comment, and our growing 

sense of the risk of “interpretive flexibility” led us to initiate a project to develop an 

online coding manual, with the needs of researchers particularly in mind. 

The aim of the project was to assist researchers interested in analysing classroom 

teaching using the Knowledge Quartet by providing a comprehensive collection of 

“grounded exemplars” of the 20 contributory codes from primary and secondary 

classrooms.  An international team of 15 researchers was assembled.  All team members 

were familiar with the KQ and had used it in their own research as a framework with 

which to observe, code, comment on and/or evaluate primary and secondary 

mathematics teaching across various countries, curricula, and approaches to teaching.  

The team included representatives from the UK, Norway, Ireland, Italy, Cyprus, Turkey 

and the United States. In Autumn 2011 team members individually scrutinised their data 

and identified prototypical classroom-exemplars of some of the KQ codes. To begin 

with, a written account of each selected classroom scenario was drafted.  Often this 

included excerpts of transcripts and/or photographs from the lesson.  Then a 

commentary was written, which analysed the excerpt, explaining why it is representative 

of the particular code, and why it is a strong example.  Each team member submitted 

scenarios and commentary for at least three codes from his/her data to offer as especially 

strong, paradigmatic exemplars.  In March 2012, 12 team members gathered in 

Cambridge, and worked together for two days.  Groups of three team members 

evaluated and revised each scenario and commentary.  The scenarios and commentaries 

were then revised, on the basis of the conference feedback.  Further details of the 

participants and methodology are given in Weston, Kleve & Rowland (2013). 

These scenarios and commentaries now combine to form a “KQ coding manual” for 

researchers to use.  This is a collection of primary and secondary classroom vignettes, 

with episodes and commentaries provided for each code.  The collection of codes and 

commentaries is now freely available online at www.knowledgequartet.org. At the time 

of writing, the website is ‘live’ but subject to further development. We encourage 

researchers and teacher educator to use and share this website in the cause of improved 

clarity about what each of the KQ codes ‘looks like’ in a classroom setting. 
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Conclusion 

Mathematics teaching is a highly complex activity; this complexity ought to be 

acknowledged when teaching is analysed and discussed, and due attention given to 

discipline-specific aspects of pedagogical decision and actions, beyond generic aspects 

of the management of learning. Strong, clear conceptual frameworks assist in the 

management of this complexity. By attending to events enacted and observed in actual 

classrooms, with a specific focus on the subject-matter under consideration, the KQ 

offers practitioners and researchers such a conceptual framework, particularly suited to 

understanding the contribution of teacher knowledge to mathematics teaching. For 

practitioners and teacher educators, the KQ is a tool for identifying opportunities and 

possibilities for teaching development, through the enhancement of teacher knowledge, 

as indicated, for example, in the book Rowland et al. (2009). Especially in the case of 

pre-service teacher education, it is beneficial to limit the post-observation review 

meeting to one or two lesson fragments, and also to only one or two dimensions of the 

KQ, in order  to focus the analysis and avoid overloading the trainee-teacher with action 

points. 

In this paper I have emphasised the progression from observation of teaching to its 

description and analysis, but I have been less explicit about the evaluation of teaching. 

In the spirit of reflective practice, the most important evaluation must be that of the 

teacher him/herself. However, this self-evaluation is usefully provoked and assisted by a 

colleague or mentor, using the KQ to identify a small number of tightly-focused 

discussion points to be raised in a post-observation review. We have suggested that 

these points be framed in a relatively neutral way, such as “Could you tell me why you 

… ?” or “What were you thinking when … ?”. It would be naïve, however, to suggest 

that the mentor, or teacher educator, makes no evaluation of what they observe. Indeed, 

the observer’s evaluation is likely to be a key factor in the identification and 

prioritisation of the discussion points. In post-observation review, it is expected that the 

‘more knowledgeable other’ will indicate what the novice did well, what they did not do 

and might have, and what they might have done differently. The KQ is a framework to 

organise such evaluative comments, and to identify ways of learning from them. 

The KQ has been successfully applied across different phases of schooling, and in 

diverse cultures, but we mention, in conclusion, a development that we had not 
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originally anticipated. Having attended presentations about the KQ in cross-diciplinary 

settings, some teacher education colleagues working in subjects other than mathematics 

– such as language arts, science and modern foreign languages education – have seen 

potential in the KQ for their own lesson observations and review meetings. They 

sometimes ask whether they could adapt and adopt the KQ for their own purposes. This 

raises the issue: can a framework for knowledge-in-teaching developed in one subject 

discipline be legitimately adopted in another? My reply usually begins as follows: what 

might the conceptualisations of the dimensions of the KQ, beginning with Foundation, 

look like in this other discipline? An answer to this question could set the scene for 

empirirical testing of the KQ in another subject area. 
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